Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №2» г. Агрыз Республики Татарстан

«Рассмотрено» Руководитель МО: // Г.Р. Ижболдина Протокол № / « ¼» августа 20¼г.	«Согласовано» Заместитель директора по УВР МБОУ СОШ №2 г. Агрыз РТ: / / Н.А.Муфтахутдинова «28» августа 202/г.	«Утверждено» 2 год Директор МБОУ СОШ №2 г.Агрыз РТ: 50У СОШ №2 / п.Мгрыз РТО.В. Дорос Приказ № Дорос
		«31» abrycta 20/1

Рабочая программа

по физике на уровень основного общего образования

Рассмотрено на заседании педагогического совета протокол № 1 от 31 августа 2021

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ

в рамках регионального проекта «Точка роста» 7-9 классы

Рабочая программа по физике для обучающихся 7-9 классов МБОУ СОШ № 2 г. Агрыз РТ разработана на основании: Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;

- приказа Минпросвещения от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего образования» (распространяется на правоотношения с 1 сентября 2021 года);
 - приказа Минобрнауки от 17.12.2010 № 1897 «Об утверждении ФГОС основного общего образования»;
- СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденных постановлением главного санитарного врача от 28.09.2020 № 28;
- СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденных постановлением главного санитарного врача от 28.01.2021 № 2;
 - концепции преподавания учебного предмета «Физика», утвержденной решением Коллегии Минпросвещения от 03.12.2019;
- учебного плана основного общего образования, утвержденного приказом № 180 «О» от 15.07.2021 г. «О внесении изменений в основную образовательную программу основного общего образования»;
 - рабочей программы воспитания МБОУ СОШ № 2 г. Агрыз РТ, утвержденной приказом № 225 «О» от 29.08.2021 г.;
 - положения о рабочих программах МБОУ СОШ № 2 г. Агрыз РТ, утвержденного приказом №230 «О» от 31.08.2021 г.;

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования, разработана на основе «Примерной программы основного общего образования по физике. 7 – 9 классы»; авторской программы Е.М. Гутника, А.В. Перышкина по физике для основной школы.

Программа обеспечена линией УМК по физике для 7–9 классов системы учебников «Вертикаль» (<u>А. В. Перышкина «Физика» для 7, 8 классов</u> и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса).

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Физика» изучается с 7-го по 9-й класс. Общее количество уроков в неделю с 7-го по 9-й класс составляет 7 часов (7–8-й классы – по 2 часа в неделю, 9-й класс - по три урока в неделю).

Планируемые результаты освоения учебного предмета «Физика» Личностные, метапредметные и предметные результаты

Личностные УУД обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения), самоопределение и ориентацию в социальных ролях и межличностных отношениях, приводит к становлению ценностной структуры сознания личности, сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

Личностными результатами обучения физике в основной школе являются:

- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;

- готовность к выбору жизненного пути в соответствии с собственными интересами ивозможностями;
- мотивация образовательной деятельности школьников на основе личностноориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий иизобретений, результатам обучения.

Метапредметными результатами изучения курса «Физики» является формирование универсальных учебных действий (УУД). К ним относятся:

- регулятивные, включающие также действия саморегуляции;
- познавательные, включающие логические, знаково-символические;
- коммуникативные.

Регулятивные УУД обеспечивают организацию учащимися своей учебной деятельности. К ним относятся:

- *целеполагание* как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно;
- *планирование* определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
 - прогнозирование предвосхищение результата и уровня усвоения, его временных характеристик;
- контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;
- коррекция внесение необходимых дополнений и корректив в план, и способ действияв случае расхождения эталона, реального действия и его продукта;
 - оценка выделение и осознание учащимися того, что уже усвоено и что еще подлежитусвоению, осознание качества и уровня усвоения;
- волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные УУД включают общеучебные, логические, знаково-символические УД.

Общеучебные УУД включают:

- самостоятельное выделение и формулирование познавательной цели;
- поиск и выделение необходимой информации;
- структурирование знаний;
- выбор наиболее эффективных способов решения задач;
- рефлексия способов и условий действия, контроль и оценка процесса и результатовдеятельности;
- смысловое чтение как осмысление цели чтения и выбор вида чтения в зависимости от цели;
- умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи, передавая содержание текста в соответствии с целью и соблюдая нормы построения текста;
- постановка и формулирование проблемы, самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
 - действие со знаково-символическими средствами (замещение, кодирование, декодирование, моделирование).

Логические УУД направлены на установление связей и отношений в любой области знания. В рамках школьного обучения под

логическим мышлением обычно понимается способность и умение учащихся производить простые логические действия (анализ, синтез, сравнение, обобщение и др.), а также составные логические операции (построение отрицания, утверждение и опровержение как построение рассуждения с использованием различных логических схем – индуктивной или дедуктивной).

Знаково-символические УУД, обеспечивающие конкретные способы преобразования учебного материала, представляют действия моделирования, выполняющие функции отображения учебного материала; выделение существенного; отрыва от конкретных ситуативных значений; формирование обобщенных знаний.

Коммуникативные УУД обеспечивают социальную компетентность и сознательную ориентацию учащихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Общими предметными результатами обучения физике в основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
 - умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

- понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение ипреломление света, дисперсия света, возникновение линейчатого спектра излучения;
- умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления

вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;

- владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тели силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;
- понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;
- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).

Учащиеся, проявляющие особый интерес к физике, смогут изучать ее на повышенном уровне с одним дополнительным учебным часом из вариативной части базисного учебного (образовательного) плана по физике.

Предметными результатами изучения предмета «Физика» являются следующие умения:

7 класс

Формирование основ научного мировоззрения и физического мышления:

- различать экспериментальный и теоретический способ познания природы;
- характеризовать механическое движение, взаимодействия и механические силы, понятие энергии, понятие об атомно-молекулярном строении вещества и трёх состояниях вещества.

Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов:

- оценивать абсолютную погрешность измерения, применять метод рядов;
- проводить измерение силы тяжести, силы упругости, силы трения; наблюдение превращения энергии, действия простых механизмов, наблюдение зависимости давления газа от его температуры и объёма, атмосферного давления, давления столба жидкости в зависимости от плотности жидкости и высоты столба жидкости, наблюдение действия выталкивающей силы и её измерение.

Диалектический метод познания природы:

- оперировать пространственно-временными масштабами мира, сведениями о строении Солнечной системы и представлениями об её формировании;
 - обосновывать взаимосвязь характера теплового движения частиц вещества и свойстввещества.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему при введении понятия скорости, плотности вещества, анализе причин возникновения силы упругости и

силы трения, опытов, подтверждающих закон сохранения энергии, закон Паскаля, существование атмосферного давления и выталкивающей силы.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- определять цену деления измерительного прибора;
- измерять массу и объём тела, температуру тела, плотность твёрдых тел и жидкостей, атмосферное давление;
- на практике применять правило равновесия рычага, зависимость быстроты процесса диффузии от температуры вещества, условие плавания тел.

8класс

Формирование основ научного мировоззрения и физического мышления:

- характеризовать понятие теплового движения и абсолютного нуля температур;
- применять первый закон термодинамики в простейших ситуациях;
- характеризовать виды теплообмена и физические процессы, сопровождающиесяизменением внутренней энергии вещества;
- применять понятие об электрическом и магнитном полях для объяснениясоответствующих физических процессов;
- характеризовать понятие электрический ток и процессы, сопровождающие его прохождение в различных средах (металлах, вакууме, электролитах, газах, полупроводниках).

Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов:

- проводить наблюдение процессов нагревания, кристаллизации вещества;
- изучать зависимости силы тока в электрической цепи от приложенного напряжения исопротивления цепи;
- проводить наблюдение односторонней проводимости полупроводникового диода;
- проводить наблюдение действия проводника с током на стрелку компаса, действия электромагнита и электродвигателя.

Диалектический метод познания природы:

- излагать научную точку зрения по вопросу о внутреннем строении звёзд, о принципиальной схеме работы тепловых двигателей и экологических проблемах, обусловленных их применением;
 - анализировать вопросы, связанные с явлением электромагнитной индукции.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему при анализе влияния тепловых двигателей на окружающую среду, при рассмотрении устройства калориметра, в процессе изучения процессов кристаллизации, испарения и конденсации, электролиза, закона Джоуля и Ленца, явления электромагнитной индукции.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- учитывать процессы теплообмена (теплоизоляция, система охлаждения автомобиля);
- проводить расчёты простейших электрических цепей, электронагревательных приборов, электрических предохранителей;
- физически верно осуществлять защиту от атмосферных электрических разрядов;
- ориентироваться на местности при помощи компаса, применять электромагниты, микроэлектродвигатели, громкоговорители.

9 класс

Формирование основ научного мировоззрения и физического мышления:

- проводить классификацию видов механического движения;
- применять в простейших случаях фундаментальные законы механики (законыНьютона, закон сохранения импульса, закон сохранения энергии);
 - характеризовать основные особенности колебательных и волновых процессовразличной природы;
 - приводить примеры, подтверждающие волновой характер распространения света, законы оптики;
- излагать ряд положений квантовой физики (гипотеза М. Планка, модель атома Н. Бора, классификация элементарных частиц и фундаментальные взаимодействия).

Проектирование и проведение наблюдения природных явлений с использованиемнеобходимых измерительных приборов:

- изучать зависимости ускорения тела от величины равнодействующей силы,приложенной к телу;
- изучать взаимодействие тел с целью проверки закона сохранения импульса;
- исследовать зависимости периода колебательной системы от её параметров (длина нити маятника, масса тела и жёсткость пружины в случае колебания тела, прикреплённого к пружине);
 - провести наблюдение явления отражения, преломления света и действия линзы;
 - провести наблюдение сплошного спектра и линейчатых спектров.

Диалектический метод познания природы:

- применять закон сохранения импульса для анализа особенностей реактивного движения;
- обосновать зависимость возможного типа механических волн и скорости их распространения от свойств среды;
- провести анализ шкалы электромагнитных излучений как примера перехода количественных изменений в частоте колебаний в качественные изменения свойств излучений различных диапазонов;
 - изложить вопрос классификации элементарных частиц и их участия в различных видах фундаментальных взаимодействий.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему и развивать критичность мышления при анализе криволинейного движения, первого закона Ньютона, условия запуска искусственного спутника Земли, условий возникновения свободных механических колебаний при объяснении различия скорости звука в различных средах, необходимости осуществления процессов модуляции и детектирования при радиотелефонной связи, при рассмотрении отражения светаот шероховатой поверхности, при объяснении факта существования изотопов.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- учитывать знания по механике в повседневной жизни (движение на поворотах, тормозной путь, равновесие);
- на практике учитывать зависимость громкости и высоты звука от амплитуды ичастоты колебаний;
- применять знания по оптике с целью сохранения качества зрения и применения зеркал, линз, оптических приборов (фотоаппарат, очки, микроскоп);
 - судить о влиянии радиоактивного излучения на живые организмы, о приёмах защитыот излучения и способах его измерения.

Выпускник научится:	Выпускник получит возможностьнаучиться:		
Механически	е явления		
- распознавать механические явления и объяснять на основе	- использовать знания о механических явлениях в повседневной		
имеющихся знаний основные свойства или условия протекания этих	жизни для обеспечения безопасности при обращении с приборами		
явлений: равномерное и равноускоренное прямолинейное движение,	и техническими устройствами, для сохранения здоровья и		

свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;

- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающиеданную физическую величину с другимивеличинами;
- анализировать свойства тел, механические явления и процессы, используя физические законыи принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическоевыражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

соблюдения норм экологического поведения в окружающей среде;

- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимедаи др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении),
- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и

большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другимивеличинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

- приводить примеры практического использования физических знаний о тепловыхявлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний об электромагнитных явлениях;
- -различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи,

расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

- закон Джоуля-Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях сиспользованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения вокружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; пониматьпринцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Элементы астрономии

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
- понимать различия между гелиоцентрической и геоцентрической системами мира.
- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
- различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;
 - различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета «Физика»

Содержание учебного предмета соответствует Федеральному государственному образовательному стандарту основного общего образования.

В данной части программы приведено рекомендуемое распределение учебных часов поразделам курса, определена последовательность изучения учебных тем в соответствии с задачами обучения. Указан минимальный перечень демонстраций, проводимых учителем в классе, лабораторных работ и опытов, выполняемых учениками.

7 класс (68 ч, 2 ч в неделю)

Введение (4 ч)

Физика — наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика техника.

Лабораторные работы и опыты

Измерение расстояний. Измерение времени. Определение цены деления шкалы измерительного прибора.

Демонстрации

Наблюдение механических, тепловых, электрических, магнитных и световых явлений: движение стального шарика по желобу колебания маятника, таяние льда, кипение воды, отражение света от зеркала, электризация тел.

Предметными результатами изучения темы являются:

- понимание физических терминов: тело, вещество, материя.
- умение проводить наблюдения физических явлений; измерять физическиевеличины: расстояние, промежуток времени, температуру;
- владение экспериментальными методами исследования при определении ценыделения прибора и погрешности измерения;
- понимание роли ученых нашей страны в развитие современной физики и влияниена технический и социальный прогресс.

Первоначальные сведения о строении вещества (6 ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основемолекулярно-кинетических представлений.

Лабораторные работы и опыты

Определение размеров малых тел. Обнаружение действия сил молекулярного притяжения. Выращивание кристаллов поваренной соли. Опыты по обнаружению действия сил молекулярного притяжения.

Демонстрации

Диффузия в газах и жидкости. Растворение краски в воде. Расширение тел при нагревании. Модель хаотического движения молекул. Модель броуновского движения. Модель кристаллической решетки. Модель молекулы воды. Сцепление свинцовых цилиндров. Демонстрация расширения твердого тела при нагревании. Сжатие и выпрямление упругого тела. Сжимаемость газов. Сохранение объема жидкости при изменении формы сосуда.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел.
 - владение экспериментальными методами исследования при определении размеровмалых тел;
- понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
 - умение пользоваться СИ и переводить единицы измерения физических величин вкратные и дольные единицы
 - умение использовать полученные знания, умения и навыки в повседневной жизни(быт, экология, охрана окружающей среды).

Взаимодействия тел (23 ч)

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы

Лабораторные работы и опыты

Измерение плотности твердого тела. Измерение массы тела на рычажных весах. Исследование зависимости удлинения стальной пружины от приложенной силы. Сложение сил, направленных по одной прямой. Исследование условий равновесия рычага. Нахождениецентра тяжести плоского тела. Исследование зависимости силы трения скольжения от площади соприкосновения тел и силы нормального давления. Градуирование пружины и измерение сил динамометром.

Демонстрации

Траектория движения шарика на шнуре и шарика, подбрасываемого вверх. Явление инерции. Равномерное движение пузырька воздуха в стеклянной трубке с водой. Различные виды весов. Сравнение масс тел с помощью равноплечных весов. Взвешивание воздуха. Сравнение масс различных тел, имеющих одинаковый объем; объемов тел, имеющих одинаковые массы. Измерение силы по деформации пружины. Свойства силы трения. Сложение сил. Равновесие тела, имеющего ось вращения. Способы уменьшения и увеличения силы трения.

Подшипники различных видов.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерное движение, инерция, всемирное тяготение
- умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну ив противоположные стороны
- владение экспериментальными методами исследования в зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления
 - понимание смысла основных физических законов: закон всемирного тяготения, закон Гука
- -владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой в соответствие с условиями поставленной задачи на основании использования законов физики
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести ивесом тела
 - умение переводить физические величины из несистемных в СИ и наоборот
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании
 - умение использовать полученные знания, умения и навыки в повседневной жизни, быту, охране окружающей среды.

Давление твердых тел, жидкостей и газов (21 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающие сосуды. Атмосферное давление. Методы измерение атмосферного давления. Барометр, манометр, насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

Лабораторные работы и опыты

Определение выталкивающей силы, действующей на тело, погруженное в жидкость.

Выяснение условий плавания тела в жидкости. Измерение атмосферного давления.

Демонстрации

Зависимость давления от действующей силы и площади опоры. Разрезание пластилинатонкой проволокой. Давление газа на стенки сосуда. Шар Паскаля. Давление внутри жидкости. Сообщающиеся сосуды. Устройство манометра. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Устройство и действие гидравлического пресса. Устройство и действие на тело архимедовой силыв жидкости и газе. Плавание тел. Опыт Торричелли

Предметными результатами изучения темы являются:

- понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления
 - умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда
 - владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания

тела в жидкости от действия силытяжести и силы Архимеда

- понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда
- понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании
- владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Работа и мощность. Энергия (14 ч)

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезногодействия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

Лабораторные работы и опыты

Выяснение условия равновесия рычага. Определение КПД при подъеме тела по наклонной плоскости. Нахождение центра тяжести плоского тела.

Демонстрации

Простые механизмы. Превращение энергии при колебаниях маятника, раскручивании пружины заводной игрушки. Измерение работы при перемещении тела. Устройство и действие рычага, блоков. Равенство работ при использовании простых механизмов. Устойчивое, неустойчивое и безразличное равновесия тел.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: равновесие тел, превращение одного вида механической энергии другой
- умение измерять: механическую работу, мощность тела, плечо силы, момент силы.КПД, потенциальную и кинетическую энергию
- владение экспериментальными методами исследования при определениисоотношения сил и плеч, для равновесия рычага
- понимание смысла основного физического закона: закон сохранения энергии
- понимание принципов действия рычага, блока, наклонной плоскости, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании.
- владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

8 класс (68 ч, 2 ч в неделю)

Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и

теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах.

Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсации. Кипение. Влажность воздуха.

Удельная теплота парообразования и конденсации. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Закон сохранения энергии в тепловых процессах. Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Лабораторные работы и опыты

Изучение явления теплообмена при смешивании холодной и горячей воды.

Наблюдение изменений внутренней энергии тела в результате теплопередачи иработы внешних сил.

Измерение удельной теплоемкости твердого тела. Измерение удельной теплоты плавления льда.

Сравнение количеств теплоты при смешивании воды разной температуры. Исследование процесса испарения.

Исследование тепловых свойств парафина. Измерение влажности воздуха.

Демонстрации

Нагревание жидкости в латунной трубке. Нагревание жидкостей на двух горелках.

Нагревание воды при сгорании сухого горючего в горелке. Охлаждение жидкости при испарении.

Наблюдение процесса нагревания и кипения воды в стеклянной колбе. Принцип действия термометра.

Теплопроводность различных материалов. Конвекция в жидкостях и газах.

Теплопередача путем излучения. Явление испарения.

Наблюдение конденсации паров воды на стакане со льдом. Устройство калориметра.

Модель кристаллической решетки.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха
- владение экспериментальными методами исследования зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества
- понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике
- овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты парообразования и конденсации, КПД теплового двигателя в соответствии с условиями поставленной задачи на основании использования законов физики
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

Лабораторные работы и опыты

Опты по наблюдению электризации тел при соприкосновении. Проводники и диэлектрики в электрическом поле.

Изготовление и испытание гальванического элемента. Измерение силы электрического тока.

Измерение напряжения на различных участках электрической цепи.

Исследование зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Исследование зависимости силы тока в проводнике от напряжения. Измерение сопротивления проводника при помощи амперметра и вольтметра. Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников. Измерение мощности и работы тока в электрической лампе. Изучение работы полупроводникового диода.

Сборка электрической цепи и измерение силы тока в ее различных участках. Регулирование силы тока реостатом.

Демонстрации

Электризация тел.

Взаимодействие наэлектризованных тел. Два рода электрических зарядов.

Устройство и действие электроскопа. Обнаружение поля заряженного шара.

Делимость электрического заряда.

Взаимодействие параллельных проводников при замыкании цепи. Устройство конденсатора.

Проводники и изоляторы. Измерение силы тока амперметром.

Измерение напряжения вольтметром. Реостат и магазин сопротивлений.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрическиеявления в позиции строения атома, действия электрического тока
 - умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление
- владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала
 - понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи. Закона Джоуля-Ленца
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании
- владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора
 - умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике

Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитноеполе Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током.

Электрический двигатель.

Лабораторные работы и опыты

Исследование явления магнитного взаимодействия тел. Исследование явления намагничивания вещества.

Исследование действия электрического тока на магнитную стрелку. Изучение действия магнитного поля на проводник с током.

Изучение действия электродвигателя.

Сборка электромагнита и испытание его действия.

Изучение электрического двигателя постоянного тока (на модели).

Демонстрации

Опыт Эрстеда. Магнитное поле тока.

Действие магнитного поля на проводник с током. Взаимодействие постоянных магнитов.

Устройство и действие компаса. Устройство электродвигателя.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током
 - владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Световые явления (10 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

Лабораторные работы и опыты

Изучение явления распространения света.

Исследование зависимости угла отражения света от угла падения. Изучение свойств изображения в плоском зеркале.

Измерение фокусного расстояния собирающей линзы. Получение изображений при помощи линзы.

Демонстрации

Прямолинейное распространение света. Получение тени и полутени.

Отражение света. Преломление света.

Ход лучей в собирающей линзе. Ход лучей в рассеивающей линзе.

Получение изображений с помощью линз.

Принцип действия проекционного аппарата и фотоаппарата. Модель глаза.

Предметными результатами изучения темы являются:

понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света

умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы

владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало

понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света

различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой

умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Резервное время — 1 ч

9 класс (102 ч, 3 ч в неделю)

Законы взаимодействия и движения тел (42 ч)

Материальная точка. Система отсчета.

Перемещение. Скорость прямолинейного равномерного движения.

Прямолинейное равноускоренное движение: мгновенная скорость, ускорение,перемещение.

Графики зависимости кинематических величин от времени при равномерном иравноускоренном движении.

Относительность механического движения. Геоцентрическая и гелиоцентрическаясистемы мира.

Инерциальная система отсчета. Первый, второй и третий законы Ньютона.

Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственныеспутники Земли.]

Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальные лабораторные работы

Исследование равноускоренного движения без начальной скорости.

Измерение ускорения свободного падения.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять *физические явления*: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения /описания физических понятий: относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
 - понимание смысла основных физических законов: динамики Ньютона, всемирного тяготения, сохранения импульса, сохранения

энергии), умение применять их на практике и для решения учебных задач;

- умение приводить примеры **технических устройств** и живых организмов, в основе перемещения которых лежит принцип реактивного движения. **Знание и умение объяснять** устройство и действие космических ракет-носителей;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);
- умение измерять мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности.

Механическое колебание и волны. Звук (16 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания].

Превращение энергии при колебательном движении. Затухающие колебания.

Вынужденные колебания. Резонанс.

Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и

периодом (частотой).

Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука]

Фронтальные лабораторные работы

Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять *физические явления*: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения *физических понятий*: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; *физических величин*: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; *физических моделей*: [гармонические колебания], математический маятник;
 - владение экспериментальными методами исследования зависимости периода колебаний груза на нити от длины нити.

Электромагнитное поле (21 ч)

Однородное и неоднородное магнитное поле.

Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.

Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы.

Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

[Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Фронтальные лабораторные работы

Изучение явления электромагнитной индукции.

Наблюдение сплошного и линейчатых спектров испускания.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять *физические явления/процессы*: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощениеи испускание света атомами, возникновение линейчатых спектров излучения и поглощения;
- умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять *закон преломления света и правило Ленца, квантовых постулатов Бора*;
- знание назначения, устройства и принципа действия *технических устройств*: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф;
 - понимание сути метода спектрального анализа и его возможностей.

Строение атома и атомного ядра (15 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения.

Опыты Резерфорда. Ядерная модель атома.

Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел Экспериментальные методы исследования частиц.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел.

Изотопы. Правила смещения для альфа- и бета-распада Энергия связи частиц в ядре. Деление ядер урана.

Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомныхэлектростанций.

Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.

Термоядерная реакция. Источники энергии Солнца и звезд.

Фронтальные лабораторные работы

Измерение естественного радиационного фона дозиметром.

Изучение деления ядра атома урана по фотографии треков.

Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

Изучение треков заряженных частиц по готовым фотографиям.

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять физические явления: радиоактивноеизлучение, радиоактивность,

- знание и способность давать определения/описания *физических понятий*: радиоактивность, альфа-, бета- и гамма-частицы; *физических моделей*: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; *физических величин*: период полураспада, дефект масс, энергия связи,
 - понимание смысла основных физических законов: закон сохранения массового числаи заряд, закон радиоактивного распада.
- **использование** полученных знаний, умений и навыков в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);
- назначения и понимание сути **экспериментальных методов исследования частиц**; знание и описание устройства и умение объяснить принцип действия **технических устройств и установок**: счётчика Гейгера, камеры Вильсона, пузырьковой камеры, ядерного реактора.

Строение и эволюция Вселенной (6 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы.

Строение, излучение и эволюция Солнца и звёзд. Строение и эволюция Вселенной.

Частными предметными результатами изучения темы являются:

- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснения движения планет Солнечнойсистемы,
- знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Резервное время -2ч Общими предметными результатами изучения курса являются:

- умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Тематическое планирование

Тематическое планирование по физике для 7-9 классов составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО:

- развитие ценностного отношения к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне;
- развитие ценностного отношения к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека;
- развитие ценностного отношения к миру как главному принципу человеческого общежития, условию крепкой дружбы, налаживания отношений с коллегами по работе в будущем и создания благоприятного микроклимата в своей собственной семье;
- развитие ценностного отношения к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;
- развитие ценностного отношения к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение;
- развитие ценностного отношения к здоровью как залогу долгой и активной жизни человека, его хорошего настроения и оптимистичного взгляда на мир;
- развитие ценностного отношения к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимоподдерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества;
- развитие ценностного отношения к самим себе как хозяевам своей судьбы, самоопределяющимся и самореализующимся личностям, отвечающим за свое собственное будущее.

7 класс.

$N_{\underline{0}}$	Название	Тема уроков	Кол-во	Деятельность учителя с учетом рабочей
	разделов		часов	программы воспитания
1.	Введение	Физика – наука о природе. Физические тела и явления.	4	Установление доверительных отношений
		Наблюдение и описание физических явлений. Физический		между педагогическим работником и его
		эксперимент. Моделирование явлений и объектов природы.		обучающимися, способствующих позитивному
		Физические величины и их измерение. Точность и		восприятию обучающимися требований и просьб
		погрешность измерений. Международная система единиц.		педагогического работника, привлечению их
		Физические законы и закономерности. Физика и		внимания к обсуждаемой на уроке информации,
		техника. Научный метод познания. Роль физики в		активизации их познавательной деятельности;
		формировании естественнонаучной грамотности.		
2.		Строение вещества. Атомы и молекулы. Тепловое	6	Применение на уроке интерактивных форм работы
	Первонача	движение атомов и молекул. Диффузия в газах, жидкостях и		с обучающимися: интеллектуальных игр,
	льные	твердых телах. Броуновское движение. Взаимодействие		стимулирующих познавательную мотивацию
	сведения о	(притяжение и отталкивание) молекул. Агрегатные состояния		обучающихся; дискуссий, которые дают
	строении	вещества. Различие в строении твердых тел, жидкостей и		обучающимся возможность приобрести опыт
	вещества.	газов.		ведения конструктивного диалога; групповой
				работы или работы в парах, которые учат

				обучающихся командной работе и взаимодействию с другими обучающимися.
3.	Взаимоде йствие тел.	Механическое движение. Равномерное и неравномерное движение. Скорость. Расчет пути и времени движения. Инерция. Взаимодействие тел. Масса. Плотность вещества. Сила. Сила тяжести. Явление тяготения. Сила упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике.	23	Привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения.
4.	Давление твердых тел, жидкостей и газов	Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.	21	Использование воспитательных возможностей содержания учебного предмета через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе.
5.	Работа и мощность. Энергия.	Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии. Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. Центр тяжести тела. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («Золотое правило механики»). Коэффициент полезного действия механизма.	14	Включение в урок игровых процедур, которые помогают поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока; организация шефства мотивированных и эрудированных обучающихся над их неуспевающими одноклассниками, дающего обучающимся социально значимый опыт сотрудничества и взаимной помощи.

8 класс.

No	Название	Тема уроков	Кол-во	Деятельность учителя с учетом рабочей программы
	разделов		часов	воспитания
1	Тепловые	Тепловое равновесие. Температура. Связь температуры	23	Привлечение внимания обучающихся к
	явления.	со скоростью хаотического движения частиц. Внутренняя		ценностному аспекту изучаемых на уроках
		энергия. Работа и теплопередача как способы изменения		явлений, организация их работы с получаемой на

		внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.		уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения. Использование воспитательных возможностей содержания учебного предмета через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
2	Электриче ские явления	Электризация физических тел. Взаимодействие заряженных тел. Два рода электрических зарядов. Делимость электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Проводники, полупроводники и изоляторы электричества. Электрическоп. Электрическое поле как особый вид материи. Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления. Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное соединение проводников. Параллельное соединение проводников. Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание. Конденсатор.	29	Применение на уроке интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися.
3.	Магнитн ые явления	Магнитное поле. Магнитное поле тока. Опыт Эрстеда. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током.	5	Применение на уроке интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию

		Применение электромагнитов. Электродвигатель.		обучающихся; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися.
4.	Световые явления	Скорость света. Источники света. Закон прямолинейного распространение света. Закон отражения света. Плоское зеркало. Закон преломления света. Линзы. Фокусное расстояние и оптическая сила линзы. Изображение предмета в зеркале и линзе. Оптические приборы. Глаз как оптическая система.	10	Включение в урок игровых процедур, которые помогают поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока.

9 класс.

№	Названия	Темы уроков	Кол.	Деятельность учителя с учетом рабочей программы
	разделов		часов	воспитания
1	Законы	Механическое движение. Материальная точка как	42	Применение на уроке интерактивных форм работы
	взаимодейс	модель физического тела. Относительность механического		с обучающимися: дискуссий, которые дают
	твия и	движения. Система отсчета. Равномерное и		обучающимся возможность приобрести опыт
	движения	равноускоренное прямолинейное движение. Равномерное		ведения конструктивного диалога; групповой
	тел.	движение по окружности. Первый закон Ньютона и инерция.		работы или работы в парах, которые учат
		Второй закон Ньютона. Третий закон Ньютона. Свободное		обучающихся командной работе и взаимодействию
		падение тел. Сила тяжести. Закон всемирного тяготения.		с другими обучающимися; организация шефства
		Сила упругости. Закон Гука. Вес тела. Невесомость. Сила		мотивированных и эрудированных обучающихся
		трения. Импульс. Закон сохранения импульса. Реактивное		над их неуспевающими одноклассниками, дающего
		движение. Механическая работа. Мощность. Энергия.		обучающимся социально значимый опыт
		Потенциальная и кинетическая энергия. Закон сохранения		сотрудничества и взаимной помощи.
		полной механической энергии.		
2	Механичес	Механические колебания. Период, частота,	16	Инициирование и поддержка исследовательской
	кие	амплитуда колебаний. Резонанс. Механические волны в		деятельности обучающихся в рамках реализации
	колебания.	однородных средах. Длина волны. Звук как механическая		ими индивидуальных и групповых
	Волны.	волна. Громкость и высота тона звука.		исследовательских проектов, что даст
	Звук.			обучающимся возможность приобрести навык
				самостоятельного решения теоретической
				проблемы, навык генерирования и оформления
				собственных идей, навык уважительного

				отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.
3	Электромаг нитное поле	Магнитное поле. Индукция магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Явление электромагнитной индукция. Опыты Фарадея. Электромагнитные колебания. Колебательный контур. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние. Электромагнитные волны и их свойства. Принципы радиосвязи и телевидения. Дисперсия света. Интерференция и дифракция света. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры	21	Привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения.
4	Строение атома и атомного ядра	Строение атомов. Планетарная модель атома. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры. Опыты Резерфорда. Состав атомного ядра. Протон, нейтрон и электрон. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Радиоактивность. Период полураспада. Альфа-излучение. Бета-излучение. Гамма-излучение. Ядерные реакции. Источники энергии Солнца и звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы.	15	Установление доверительных отношений между педагогическим работником и его обучающимися, способствующих позитивному восприятию обучающимися требований и просьб педагогического работника, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности; побуждение обучающихся соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (педагогическими работниками) и сверстниками (обучающимися), принципы учебной дисциплины и самоорганизации.
5	Строение и эволюция Вселенной.	Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.	6	Привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения.